《积的变化规律》教学设计

时间:2024-10-23 06:54:42
《积的变化规律》教学设计

《积的变化规律》教学设计

作为一位杰出的教职工,往往需要进行教学设计编写工作,教学设计是把教学原理转化为教学材料和教学活动的计划。优秀的教学设计都具备一些什么特点呢?以下是小编收集整理的《积的变化规律》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

  《积的变化规律》教学设计1

教学内容:

教材第58页例4“积的变化规律”。

教学目标:

1、使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。

2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。

3、初步获得探索规律的一般方法和经验,发展学生的推理能力。

教学重难点:

引导学生自己发现规律,概括规律,进而运用规律。

教学过程:

一、创设情景,提出目标。

1、创设情景:通过前一段时间的学习,同学们对乘法的计算已经掌握的很好了,下面同学们算一算下面各题。

8×3= 60×4=

16×3= 180×4=

32×3= 240×4=

学生计算后。师:说说你是怎样算的?你发现了什么?

学生汇报交流,

2、师引入:是的,在乘法运算中,积会随着因数的变化而变化,这就是我们今天要研究的积的变化规律。

3、提出目标:

让学生先说一说,再出示目标:

(1)积的变化规律是什么?学这些规律有何用?

(2)通过这节课的学习,你掌握了探索规律的什么方法?

[设计意图]上面这两个题蕴涵了函数思想,通过这两组练习,使学生对积的变化规律有一个初步的感性认识,为学习新知做好准备。

二、展示学习成果

1、小组内个人展示。

(1)提出自学要求:自学课本58页的例4、完成做一做后按学困生→中等生→优生的顺序在小组内交流展示。

(2)生自学,师巡视指导,收集学习信息。

2、以小组为单位在全班展示发现的积的变化规律。

(1)积随因数扩大而扩大的规律。

(2)积随因数缩小而缩小的规律。

3、师生共同讨论把两个规律合并。

(1)合并:一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。

(2)质疑讨论,引发冲突。生先质疑,师再补充质疑:

扩大(或缩小)什么意思?

为什么是相同的倍数?

对“一个因数不变”中的“因数”是否适用于任何整数。

(3)在充分讨论的基础上,把规律补充完整。学生进一步理解积的变化规律。

4、运用规律,完成练习。

让学生展示“做一做”的完成情况,并说一说是如何根据积的变化规律来完成的。

[设计意图]让学生充分经历学习的过程,学会研究问题的一般方法,使学生体会到学习的快乐。让学生动脑、动口、动手,相互交流。进一步培养学生自主探究的能力和合作交流的意识。

三、巩固拓展,运用新知

1、根据25×2=50,利用规律,直接写答案。

25×20= 25×( )=1500

25×200= 25×( )=200

25×XX= 25×( )=50

说说自己是怎样想的?

2、练习九第1题。

3、指导学生完成练习九第5题。(一个因数扩大,另一个因数缩小的积的变化规律)

[设计意图]通过练习,让学生巩固新知,进而引导学生继续探索积的变化规律,使学生知道积的变化规律还没研究完,从而进一步激发学生和探索欲望。

四、课堂小结,布置作业

1、学生谈收获。

2、作业:

(1)练习九的第2、3、4题。

(2)两因数的积是345,把其中一个因数乘40,另一个因数除以5,则新的积是多少?(提高题)

  《积的变化规律》教学设计2

教学内容:四年级教科书第58页例4、

教学目标:

1、使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分趣的事情。

2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。

3、初步获得探索规律的一般方法和经验,发展学生的推理能力。

重难点:

重点:一个因数不变,另一个因数与积的变化情况。

难点:自主思考探索,归纳积的变化规律。

教学过程:

一、激发兴趣,导入新课

师:我们在上课前玩一个对对子的游戏,看谁反应最快!

师出:1只青蛙,( )条腿。(并拍手)

生对:1只表蛙, 4条腿。

师:你们的脑子转得真快,其实在这个游戏中藏着许多的数学知识,让我们一起来找一找。刚才同学们说2只青蛙8条腿,谁能列式?6只呢?18只呢?

2×4=8

6×4=24

18×4=72

二、自主学习,探索新知。

1.师:观察这组算式什么变了,什么没变?

生:其中一个因数变了,积也变了。另一个因数没变。

师: 把第一个算式的因数同第二个算式的因数比较,扩大了多少倍?积有什么变化?

生:扩大了3倍,积也扩大3倍。

师:第二个算式跟第三个算式比呢?

师: 第一个算式跟第三个算式比呢?

师:如果一个因数扩大10倍,20倍,100倍呢?积会怎么样?

生:也会扩大相同的倍数。

师:这里你发现什么规律?

总结:(板书)两个因数相乘,其中一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数。

2、运用这个规律练习

24× 5=120 14×5=70

24×10=( ) 14×( )=210

24×20=( ) ( )×30=420

学生填写,并说说你是怎么想的。

3、科学家都善于猜想,今天咱们也来一次大胆的猜想,你又会有什么发现?

80×5=400

40×5=200

20×5=100

小结:两个因相乘,一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。

4、运用规律练习

45×20=900 16×30=480

45×10=( ) 16×15=( )

45×2 =( ) ( )×15=120

并说说你是怎么想的?

5、整体概括规律

师:谁能用一句话将两条规律概括为一条?让语言更简洁。

板书:两个因数相乘,一个因数不变,另一个因数扩大或缩小几倍,积也扩大或缩小相同的倍数。

师:刚才我们发现的规律是乘法计算中一条特别重要的性质叫积的变化规律。

板书:积的变化规律

三、验证规律

师:大家发现的这条规律是不是具有普遍性呢?研究数学问题一般不匆忙下结论,再举一例子,看是否一致,如果不同就不能下结论。那么我们来验证一下吧!

根据15×6=90,那么15×24=?,先根据规律来填写,再算一下。你会接着写吗?

小结:只要大家勤于思考,你还会发现积更多的变化规律。

  《积的变化规律》教学设计3

教材分析

《积的变化规律》是人教版四年级上册第三单元的例题、

本节课是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的理解以及今后自主探索和理解小数乘除法的计算方法做好准备。

教材首先出示2×6 =12、20×6=120、200×6=1200 ,让学生依据给出的乘法算式,探索当一个因数不变,另一个因数乘一个数,得到的积会有什么变化,引导学生作出猜想。再出示20×4=80,10×4=40,5×4=20,引导学生观察,发现规律,提出猜想。

学情分析

该内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的理解以及今后自主探索和理解小数乘除法的计算方法做好准备。

教学目标

一、知识与技能:

(1) 使学生探索并掌握一个因数不变,另一个因数乘几,积也随着乘几的变化规律。

二、过程与方法:

(1)经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得一些探索数学规律的经验,发展思维能力。

三、情感态度价值观:

(1)通过学习活动的参与,培养学生合作交流的能力,并在探索活动中感受数学结论的严谨性与正确性,获得成功的体验,增强学习数学的兴趣和自信心。

教学重点和难点

1.教学重点:

使学生探索并掌握一个因数不变,另一个因数乘几(或除以几),积也随着乘几(或除以几)的变化规律。

2、教学难点:在探索和发现规律上,能更多的体验一般策略和方法,发展数学思考。

  《积的变化规律》教学设计4

教学目标:

1、让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。

2、使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。

3、通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。

4、培养学生从正反两个方面观察事物的辨证思想。

教学重点:

发现并运用积的变化规律。

教学难点:

积的变化规律的探究策略。

教学过程:

一、创设情景,提出问题

屏幕显示:为九九重阳节开展的“走进敬老院,浓浓敬老请”活动我们全校学生都捐出自己的零花钱,为老人们购买一些物品。请你们帮忙算一算,一千克橙子6元,买2千克花多少钱?40千克呢?200千克呢?(学生回答)

6╳2= 12(元)

6╳40=240(元)

6╳200=1200(元)

师:仔细观察、比较这组算式,你能发现什么?

生1:有一个因数都是6。

生2:对,一个因数相同,另一个因数不同,积也不同。

师 :观察得真仔细! 一个因数相同可以说一个因数不变,那另一个因数呢?

生3:另一个因数变了,积也变了。

生4:我看到一个因数不变,另一个因数越变越大,积也越变越大。

师 :你是从上往下观察的,还可以怎样看?

生5:倒过来,从下往上看,一个因数不变,另一个因数越变越大,积也越变越大。

师 :当一个因数不变时,另一个因数和积是怎样变化的?积的变化有没有规律呢?是什么规律呢?这节课我们来研究这个问题。

二.自主探究,发现规律

1、研究一个因数不变,另一个因数变大,积的变化情况。

6×2= 12(元)

6×20=120(元)

6×200=1200(元)

(1)师:在研究问题的过程过程中,为了方便我们研究和表达,可以把这组算式分别说成(1)式,(2)式,(3)式。

(2)引导学生分别用(2)式、(3)式与(1)式比,观察因数和积分别有怎样的变化?在小组内互相说一说。

(3)出示18×2=36和30×2=60,还是与(1)式比较,观察因数和积分别又有怎样的变化?在小组内互相说一说。

师:谁来说说通过刚才的两次比较,你们又发现了什么?

生:一个因数不变,另一个因数变化,积也变化。

师:怎样变化的?能说得具体些吗?

生1:一个因数不变,另一个因数乘一个数 ,积也乘相同的数。

生2:一个因数不变,另一个因数乘几 ,积也乘几。

师:你们真能干!刚才,我们从上往下观察,发现了这样的积的变化特点,那从下往上观察,用刚才比较研究的方法,比一比,看看有没有新的发现?具体应该怎么比呢?

2、研究一个因数不变,另一个因数变小,积的变化情况。

(1)师:如果这组算式从下往上观察,分别把上面的两个式子与底下的一个式子作比较,会不会有新的发现呢?

学生独立思考后把想法在小组内交流一下。

(2)全班汇报交流:你发现了什么?是怎样发现的?

3、验证规律。

师谈话:刚才大家发现的规律是不是具有普遍性呢?研究数学问题一般不匆忙下结论,要再举一例子,看看会不会出现相同的情况。如果有一个例子出现了不同的情况,就不能把这种发现当作规律,这就是研究数学问题应该持有的严谨的态度。你能自己举例说明积的变化规律吗?

每位学生写3个算式,同桌互相检查和交流因数和积是怎样变化的。(汇报情况略)

师 :既然许许多多的乘法算式中都有这样的积的变化特点,它就是今天我们探究的积的变化规律。谁来把这个规律再说一说。

生 :一个因数不变,另一个因数乘几 ,积也乘几;一个因数不变,另一个因数除以几 ,积也除以几。

师 :数学讲究简洁美,能把它说得再简单点吗?

生 :一个因数不变,另一个因数乘(或除以)几 ,积也乘(或除以)几。

师 :说得太棒了!同学们,祝贺你们发现了积的.变化规律,愿意用它解决实际问题吗?

三、运用规律,解决问题

1、根据8×50=400,直接写出下面各题的积。

16×50= 32×50= 8×25=

2、全社会各界朋友发起了向西藏教育捐赠和教师自愿者等活动,他们考虑着何种运输方式进入西藏。咱们也帮忙分析一下,一辆汽车在青藏公路上以60千米/时的速度行使,4小时可以行( )千米。一列火车在青藏铁路上行驶的速度是汽车的2倍,这列火车用同样的时间可行千米。

生 :一辆汽车4小时可以行驶240千米,用60乘4等于240千米。

师 :根据什么数量关系来列式计算?

生 :速度乘时间等于路程。

师 :第二个问题呢?

生 :60×2×4=480千米,先算出火车速度,乘时间4小时等于路程。

师 :还有其它解法吗?

生 :240×2=480(千米),因为速度乘2就是一个因数乘2,时间不变就是一个因数不变,那么积也就是路程也要乘2等于480千米。

师 :能运用积的变化规律解决问题,你的数学意识很强。同学们喜欢那种方法?

生 :喜欢第2种,只需一步计算。

四、全课总结,拓展延伸

师 :在这节数学课上,你们还有什么收获吗?

生1:我们找到了积的变化规律:一个因数不变,另一个因数乘(或除以)几 ,积也乘(或除以)几。

生2:我会用积的变化规律解决生活中的问题,很方便。

师:大家用自己智慧的双眼,聪明的大脑发现并运用了乘法规律,老师真为你们高兴。学以致用,其乐无穷。先选择下面计算题中的一道算出积,然后直接写出其他各题的积。

18×30= 18×15= 18×5= 54×5=

师:比较18×15= 270和 54×5=270,你们还有什么新的问题、新的想法吗?

生:为什么两个因数都变了,积却不变呢?是不是有什么规律?

师:多么有价值的问题!下课后你们用今天研究问题的方法去探究新的规律,老师祝你们成功!

  《积的变化规律》教学设计5

教学内容:苏教版义务教育课程标准实验教科书数学四年级(下册)P83例题,P83-84“想想做做”。

教学目标:

1、使学生借助计算器的计算,探索并掌握“一个因数不变,另一个因数乘几,得到的积等于原来的积乘几”的变化规律。

2、使学生在利用计算器探索规律的过程中,经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得探索规律的经验,发展思维能力。

3、使学生在参与数学学习活动的过程中,学会与他人交流,体会与他人合作交流的价值,逐步形成良好的与他人合作的习惯和意识。

4、使学生在发现规律的过程中,体验数学活动的探索性和创造性,感受数学结论的严谨性和确定性,获得成功的乐趣,增强学习数学的兴趣和自信心。

教学过程:

一、游戏引入:

用计算器玩游戏

要求:在1-9中任意选一个数,然后用计算器把这个数乘3,再乘127,算出结果。只要一报出结果,老师马上能知道,一开始在1-9中任意选择的是哪个数。

【意图:计算器作为探索的工具并以游戏方式载入一是有利于激活学生熟练运用计算器的能力,同时对游戏中隐含的规律产生好奇,为后继进一步运用计算器探索规律做好心理上的准备】

二、揭示课题:

1、刚才我们用计算器玩了个小游戏,今天课上我们还要用到计算器,我们要用它来探索规律。(板书课题:用计算器探索规律)

2、看了这个课题,现在你最想了解的是什么?通过交流让学生感受到三个方面:①什么规律? ②怎样研究? ③有什么用?

【意图:一开始提出探索的目标有利于学生明确探索的内容和方向,把重点集中到探索和发现规律上来,本课的着力点自然地凸现了出来。】

三、探索规律

(一)建立猜想

1、用计算器计算:36×30的积。

2、36、30在这个乘法算式中叫做什么?1080又叫做什么?

3、猜想:如果其中的一个因数不变,另一个因数乘一个数,得到的积可能会有什么变化呢?比如,一个因数36不变,把另一个因数30乘2,或者把30乘10,积会有什么样的变化呢?再比如,一个因数30不变,另一个因数36乘8,或者乘100,积又会有什么样的变化呢?能不能来猜一猜?

《《积的变化规律》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式